The VMARS Archive

VMARS is a not-for-profit organisation specialising in all types of vintage communications electronics. We maintain an archive of documentation to help our members understand, research, repair and enjoy their vintage radio equipment. Access by non-members is extended as a gesture of goodwill, but not as a right.

Rare documents are frequently provided free of charge by VMARS members, and all scanning and document processing is carried out on a voluntary basis. Accordingly, we do not expect others to profit from the hard work of volunteers, who give their time freely without charge.

This is a gentle reminder that the document attached to this notice is provided to you **for your personal use only**. This edition remains copyright of VMARS, and while you may sell or give your copy to someone else, this right does not extend to making further copies of this information, either to give or sell to others. This includes a prohibition on placing it on websites, or printing it for sale at rallies, boot fairs or similar public events. **If our goodwill is abused, then withdrawal of public access to our archive will be the result.**

Please refer anyone else wanting a copy back to VMARS – either to our website at http://www.vmars.org.uk/ or by email to the Archivist at archivist@vmarsmanuals.co.uk. If you want to know more about our copyright, please see the FAQ below.

FAQ on copyright of VMARS documents

- **Q** How can you copyright a document that is already in the public domain?
- A. Plainly the original copyright of the content has expired, or we have obtained permission to copy them. What we copyright is our own edition of the document.
- **Q.** Surely your "own edition" is identical to the original document, so cannot be copyrighted?
- A. Our editions are **not** identical to the original document. You will find that full advantage has been taken of electronic publishing facilities, so pages are cleaned up where possible (rendering them better than originals in some cases!), and large diagrams are prepared for both on-screen viewing and for easy printing at A4 format.
- **Q.** Why do you not just give your manuals away, as so many do via the internet these days?
- A. We do make all our manuals available free of charge (in soft copy) to VMARS members. These members have already covered the costs of running the archive via their subscriptions. The only time members are charged for copies is when they request them on paper, in which case charges are restricted to the cost of paper, ink and postage.

The VMARS archive is not a "shoe-string" operation. Money is spent on computing facilities to make copies available, and on shipping original documents securely (usually costing several pounds per shipment) to carry out the scanning. As members have already contributed to these costs, it is only reasonable that non-members should do likewise — and thus a very moderate charge is levied for copies provided to non-members. With typical commercial photocopying charges starting at 5 pence per A4 side, it will be evident that paying 4 pence for our equivalent on paper is excellent value (amounts current at Spring 2004). We also think "you get what you pay for" — we invite you to make the comparison and draw your own conclusions!

Despite the above, we will be making copies of essential technical information (circuit diagram, parts list, layout) freely available to all via our website from late 2004 onwards. This will be done to try and encourage and enable the maintenance of our remaining stock of vintage electronic equipment.

Guidance on using this electronic document

Acrobat Reader version

You need to view this document with Acrobat Reader <u>version 5.0</u> or later. It is possible that the document might open with an earlier version of the Acrobat Reader (thus allowing you to get this far!), but is also likely that some pages will not be shown correctly. You can upgrade your Acrobat Reader by direct download from the internet at http://www.adobe.com/products/acrobat/readermain.html or going to http://www.adobe.com/ and navigating from there.

Don't miss the index!

This document has had "bookmarks" added – which provide you with an "on-screen index". These allow you to quickly move to particular parts of the document, a numbered section or maybe the circuit diagrams for instance, merely by clicking on the page title. Click on the "Bookmarks" tab on the left hand side of the Acrobat Viewer window to access this feature – move the cursor over these titles and notice it change shape as you do so. Click on any of these titles to move to that page.

Large diagrams

The large diagrams are given in two formats – in A4 size sheets to allow easy printing, and complete as originally published to allow easy on-screen viewing. These versions are in different sections of the document, which can be found within the bookmarks.

Printing the document on an A4 format printer

The document has been optimised for printing on A4 size paper (this is the common size available in UK and Europe, which measures 29.7cm by 21.0cm). Please follow these steps (these are based on Acrobat Reader version 6.0 – other versions may differ in detail):

- 1. Work out the page numbers you want to print. If you want to print the whole document, then within "Bookmarks" (see above), first click on "Front", and note the page number given at the bottom of the Acrobat window this will give you the page number of the first page to be printed. Similarly click on "End of A4 printable copy", to determine the last page to be printed.
- 2. Select "File Print" or click on the printer icon. This will bring up the print dialog box.
- 3. Select the correct printer if necessary.
- 4. In the area marked "Print Range" click on the radio button marked "Pages from..", then enter the first and last page numbers worked out in step 1 into the "from" and "to" boxes.
- 5. In the "Page Handling" area, next to "Page Scaling", select "Fit to paper". The press "OK"

Note that the document is set up for double-sided printing – if you print it out single-sided then you will find a number of blank pages present, which may be removed and reused.

Printing the document on an US Letter format printer

Since A4 and US Letter sizes are similar, it is expected that this document should print satisfactorily on the latter format paper. This has not been tested however, and is not guaranteed. Follow the steps as for A4 printing, and make doubly sure that "Fit to paper" is selected (step 5).

Any other problems?

Please get in touch with me at archivist@vmarsmanuals.co.uk.

Richard Hankins, VMARS Archivist, Summer 2004

ELECTRICAL AND MECHANICAL
ENGINEERING REGULATIONS
(By Command of the Defence Council)

TELECOMMUNICATIONS E 742 Part 2

RECEPTION SET, EDDYSTONE, 730/4 (Z1/ZA 51262)

TECHNICAL HANDBOOK - FAULT FINDING AND REPAIR DATA

Errata

Note: These Pages O and O1, Issue 1, must be filed immediately in front of Page 1001, Issue 1, dated 16 May 60.

- 1. The following amendments must be made to the regulation.
- 2; Page 1004, Table 2501 Cct ref R64, columns 2 and 4

Delete: '68k' and '20' Insert: '330k' and '10'

3. Page 1008, Table 2501, Cct ref V12, column 3, immediately after CV454 Insert: '/CV4009'

Issue 1, 8 May 67

Page 0

Distribution - Class 335. Code No 3

TELECOMMUNICATIONS
E 742
Part 2

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

4. Page 1011, Fig 2501b

position E7, resistor R64.
Delete: '68k' Insert: '330k'

b. position E7, Red figures Delete: '20V' (1,000)

Insert: '7V' (100)

EME/8/2146 (TELS)

Page 01

Issue 1, 8 May 67

Part 2

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS (By Command of the Army Council)

RECEPTION SET, EDDYSTONE, 730/4 (Z4/ZA 51262)

TECHNICAL HANDBOOK - FAULT FINDING AND REPAIR DATA

This Part 2 contains fault finding and repair data in tabular and diagrammatic form. Part 1 of this EMER contains a general description of the equipment. Tels E 743 and E 744 deal with repairs.

INTRODUCTION

1. This regulation provides circuit and layout diagrams, component tables, and specification data. The text relating to test operations will be found in Tels E 744.

SPECIFICATION DATA

2. Unless otherwise stated, r.f. input is modulated 30% at 400-1000c/s.

Sensitivity

- 3. For a signal-to-noise ratio of 15dB, and an output power of 50mW, the input must be:-
 - (a) Less than 5µV for an a.m. signal modulated 30% at 300c/s.
 - (b) Less than 1µV for a c.w. signal on ranges 1, 2, 3 and 4.
 - (c) Less than 2µV for a c.w. signal on range 5.

A.F. distortion

- 4. Taken at 2.5Ω output at 1kc/s.
 - (a) 1W output 20% total harmonic maximum.
 - (b) 500mW output 7% total harmonic maximum.
 - (c) 100mW output 3% total harmonic maximum.

A.G.C.

5. At any frequency and any setting of the bandwidth switch, an increase of input from $3\mu V$ to 300mV must not increase the output level (set at 50mW with the $3\mu V$ input) by more than 75mW, ie it must not rise above 125mW.

Beat frequency oscillator stability

6. With an input set at 3.16 μ V (10dB above 1 μ V) a change of input to 3.16 μ V (70dB above 1 μ V) and a.g.c. on, the beat note must not change by more than 50c/s.

TELECOMMUNICATIONS E 742 Part 2

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

Noise factor

7•	Frequency	Noise factor
	750kc/s	12dB
	2Mc/s	5đB
	4Mc/s	10.5dB ± 3dB
	9Mc/s	6.5dB ± 3dB
	20Mc/s	9.5dB ± 3dB

I.F. bandwidth

8.

	Bandwidth (kc/s)		
SELECTIVITY control position	Min at 3dB down	Max at 45dB down	
Broad	9	24	
First intermediate	4	16	
Second intermediate	2.5	13	
Narrow	2.0	12	

Crystal filter

9. With the crystal filter in circuit and the crystal correctly phased, the rejection at 1kc/s off tune must be at least 49dB with the SELECTIVITY control in the 'narrow' position.

A.F. filter

10. Not less than 100c/s wide at 6dB down.
Not more than 250c/s wide at 25dB down.

Image rejection

More than 80dB at 2Mc/s
More than 40dB at 18Mc/s
More than 30dB at 25Mc/s

Cathode follower

12. Output approximately 300mV into approximately 68Ω.

Table 2501 - Components

				- Components		
Cet	Value	Value Rating To	Tol	_	Loca	tion
ref	ref (Ω)	(W)	(%)	Туре	Schematic (Fig 2501)	Layout (Fig 2504)
			RES	ISTORS		
R1 R2 R3 R4 R5 R6 R7 R8 R9 R11 R12 R13 R14 R15 R17 R19 R20 R21 R22 R23 R24 R25 R27 R28 R29 R31 R32 R33 R34 R36 R37 R38 R34 R34 R36 R37 R36 R37 R36 R37 R36 R37 R36 R37 R37 R37 R37 R37 R37 R37 R37 R37 R37	12 470k 470k 68 33k 150 12 470k 68 33k 1k 150 12 100k 470k 150 470k 15k 470k 15k 470k 820 3.3k 1.2k 470k 820 3.3k 1.00k 1	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	comp comp comp comp comp comp comp comp	a/F2 a/F3 a/F4 a/G51 a/H1 a/H5 a/M3 a/N4 a/N1 a/P3 a/N2 a/N5 b/E1 b/E1 b/E5 b/F5 b/F5 b/F5 b/F5 b/F5 b/F5 b/F5 b/F	D3 1)2 D3 F4 F4 B4 D5 F5 C6 BC6 D6 B2 F6

TELECOMMUNICATIONS E 742 Part 2 ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

Cet	Value	Rating Tol	ም ል፤		Location	
ref	1 4 1 4 2 9 1	(%)		Schematic (Fig 2501)	Layout (Fig 2504)	
			RESISTO	RS - (cont)		
P1+7	470k	1/2	20	comp	b/P5	
R48	680	3/4	20	comp	b/Q5	
R49	47k	3/4	20	comp	b/R3	
R50	4.7k	3/4	20	comp	b/R5	
R 51	1 M	1/2	5	comp	a/J8	1
R52	100k	3/4	20	comp	a/K7	1
R53	22k	3/4	20	comp	a/K6	
R54	2.2k	1/2	20	comp	a/M8	B 6
R55	2.2k	1/2	20	comp	a/M8	B7
R56	10k	1/2	20	comp	a/R7	D8
R57	1k	1/2	20	comp	a/S7	E8
R58	22k	1/2	20	comp	a/R8	c8
P59	10k	3/4	20	comp	b/B1	
R60	5k	<i>-,</i> .	_	variable	b/B2	
R61	27k	1	20	comp	b/B2	
R62	2M	1/2		comp	b/K4.	
R63	22k	1/2	5 20	comp	b/E8	
R64	336k	1/2	10	comp	b/E7	
R65	10k	1/ 2		variable	b/N5	
R66	2.7k	6	5	WW	b/D6	
R67	4.7k	3/4	20	comp	b/C7	
R68	22k	1	20	comp	b/c8	
R69	270k	3/4	20	, -	b/D7	
R70	5	2/4	20	comp variable	a/D8	
R71	6.8k	3/4	20	1	a/100	
R72	100k	2/4	20	сощр	b/D8	
		3/4	20	comp	b/M1	
R73	6.8k	1/2	20	comp	b/M3	
R74 ₆	100k	3/4	20	comp	a/J6	
R75	47	1/2	20	comp	a/M6	D7
R76	3M	1/2	20	comp	a/K6	
R77	22k	1	20	comp	b/L6	
P.78	470k	1/2	20	comp	b/K8	
P79	68	1/2	20	comp	b/1:8	
R80	10k	1/2	20	comp	b/E6	
R81	68k	1/2	20	comp	b/F7	
Cet	Value	Rating	Tol	Туре	Loca	
\mathbf{ref}	(F)	(v)	(%)		Schematic (Fig 2501)	Layout (Fig 2504)
			CAF	ACITORS		
C1	3-23p			air	a/C1	D3
C2	10p	350	10	silver-mica	a/D1	D3
03	3-23p			air	a/C2	C3
	1 278	1	ı	,	1 67 06	1 67

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

TELECOMMUNICATIONS E 742 Part 2

Cet	Value	Rating	Tol		Locat	ion
ref	(F)	(V)	(%)	Туре	Schematic (Fig 2501)	Layout (Fig 2504)
		C	APACITO	RS - (cont)		
C5	3-23p			air	a/C2+	В3
C6	3-23p			air	a/C4	A3
C7	100p	350	10	silver-mica	a/E2	D3
C8	500p	350	10	mica	a/F3 & b/G8	D1 .
C9A-D C10	10-367.75p	350	10	variable silver-mica	a/E4 a/E4	D.7
C11	25p 0.01μ	150	20	7	8/G4	D3 D4
C12	0.01μ	350	20	paper paper	a/F4	114
012	0.1μ	350	20	paper	a/G5	E3
C14	500p	350	10	mica	a/G3 & b/G8	D2
C15	0.1μ	350	20	paper	a/G4	F4
C16	0.1μ	350	20	paper	a/H5	F4
C17	20p	350	10	silver-mica	a/K1	D4
C18	3-23p			air	a/L2	D4
C19	6p	350	10	silver-mica	a/K2	C4.
C20	3-23p			air	a/K2	C4
C21	3p	350	10	silver-mica	a/K2	B4.
C22	3-23p			air	a/K3	B5
C23	3p	350	10	silver-mica	a/K4	B4
C24	3-23p	1		air	a/K4	B4-
C25	3-23p	1		air	a/K5	A5
C27	25p	350	10	silver-mica	a/M3	D5
C29	0.1μ	350	20	paper	a/N4	F5 D5
C30	0.01μ	150	20	paper	a/N₄	D5
C31	100p	350	10	silver-mica	a/M2	D5
C32	0.1µ	350	20	paper	a/N3	F5
C33	0.1μ	350	20	paper	a/05	F5
C34	20p	350	10	silver-mica	a/P1	D6
C35	3-23p		١.,	air	a/Q2	D5
C36	20p	350	10	silver-mica	a/Q2	D6
C37	6p	350	10	silver-mica	a/P2	C5
C38	3-23p	750	10	air	a/Q3	C5
C39	3p	350	10	silver-mica	a/P3 a/Q3	в6 с 6
C40	3-23p	350	10	silver-mica	a/P4	
C41 C42	3p 3-23p)500	10	air	8/94	B5 B5
C43	3-23p	1		air	a/Q5	A6
C44	0.1μ	350	20	paper	a/R2	, AO
C445	400p	350	20	silver-mica	a/S2	
C46	800p	350	2	silver-mica	a/S2 & b/B3	
C47	800p	350	2	silver-mica	a/S2 & b/B3	
C48	3-10p] -	air	b/C3	
C51	25p	350	10	silver-mica	a/S3	
C52	0.01μ	350	20	paper	a/N5	B1
C53	0.01μ	150	20	paper	a/S5	D6
C54	0.1μ	350	20	paper	a/S4	F 6
C55	0.1μ	350	20	paper	a/S5	F6
C56	10p	350	5	ceramic	a/06	D6

TELECOMMUNICATIONS

E 742 Part 2

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

Table 2501 - (cont)

Cot Value ref (F)	Value	Value Rating	ing Tol	Location		
		(%)		Schematic (Fig 2501)	Layout (Fig 2504)	
			CAPACIT	OES - (cont)		
C57	0.01μ	350	20	paper	b/D5	
C58	0 . 04μ	350	10	mica	b/D1	
059	20p	350	10	silver-mica	ъ/сз	
C60	500p	350	2	silver-mica	b/D4	
C61	0.1μ	350	20	paper	b/D5	
C62 C63	0.1μ	350	20	paper	b/E5	
C64	400p	350	2	silver-mica	b/E3	
C65	400p 0•01μ	350	2	silver-mica	b/F3	
c66		350	20	paper	b/F5	
C67	0 _• 1μ 0 _• 1μ	350 350	20 20	paper	b/F2	
C68	400p	35 0	20	paper silver-mica	b/G2	
C69	400p	350	2	silver-mica	b/G3 b/H3	
C70	20p	350	10	silver-mica	b/K3	
C71	0.1μ	350	20	paper	b/G5	
C72	100p	350	10	silver-mica	b/H3	
C73	100p	350	10	silver-mica	b/H4	
C74	0.1μ	350	20	paper	b/K5	
C75	0.1μ	350	20	paper	ъ/H5	
C76	0.01µ	350	20	paper	b/L5	
C77	30µ	15	+100	electrolytic	b/N5	
	- ,		- 20		-7 -17	
c78	8μ	275	+100	electrolytic	b/02	
	•		- 20		,	
C79	0.01 μ	350	10	mica	b/P3	
C80	0 . 01µ	350	10	mica	b/N2	
C81	7000p	350	1	silver-mica	b/N3	
C82	7000p	350	1	silver-mica	b/04	
083	30µ	15	+100	electrolytic	b/Q5	
70		}	- 20			
C84	0.01μ	350	10	mica	b/R3	
C85	3-23p			air	a/J8	
C86	20p	350	10	silver-mica	a/L7	
c87 c88	0.01μ 7000-	350	10	mica	a/L7	
C89	7000p	350	1	silver-mica	a/N7	
	3-23p	[air	a/07	D7
C90 C91	3-23p	350	a	air	a/N7	c6
C92	3625p 1625p	350 350	1	silver-mica silver-mica	a/07	C7
C93	1025p 10p	350 350	1 10	silver-mica	a/N7	B7
094	3-23p	J90	10	air	a/07 a/07	B7
C95	900p	350	1	silver-mica	a/N8	B7 B7
C96	20p	350	1	silver-mica	a/08	B6
C97	3-23p		'	air	a/08	B6
c98	144Op	350	1	silver-mica	a/N8	A7
C99	20p	350	1	silver-mica	a/08	A6

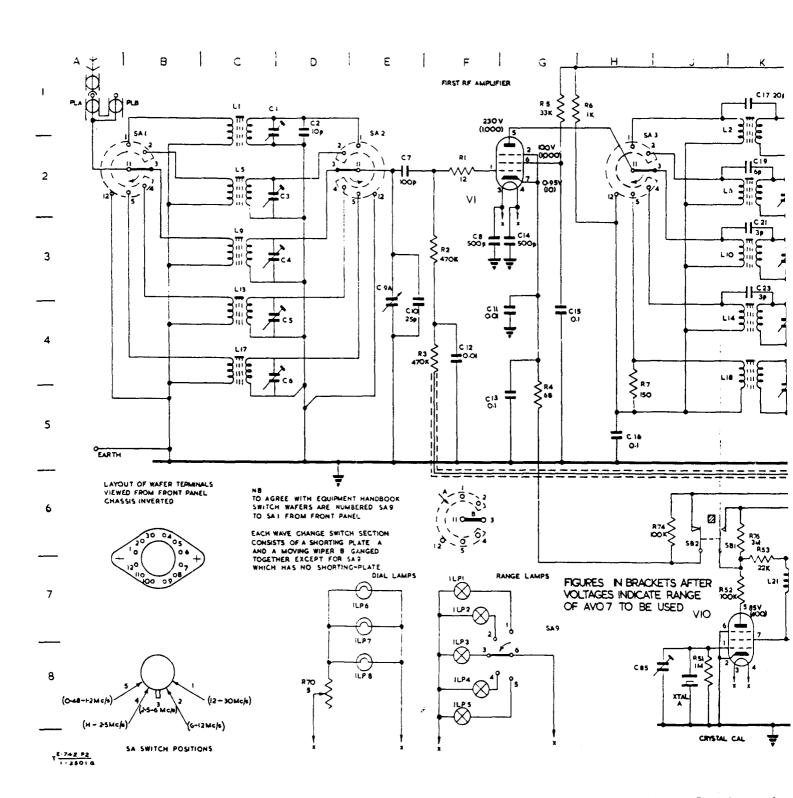
ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

TELECOMMUNICATIONS E 742 Part 2

Table 2501 - (cont)

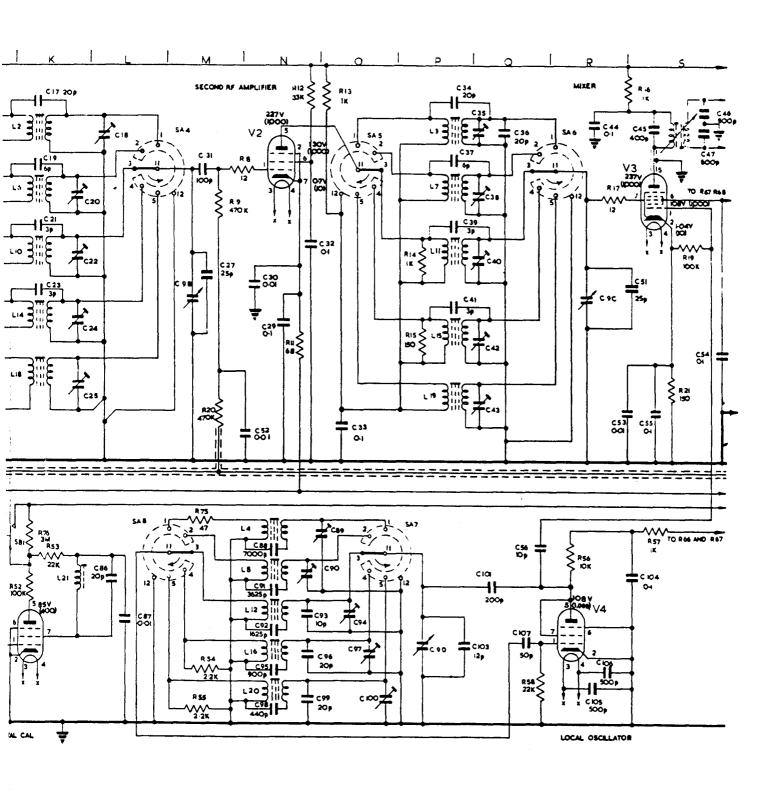
Cat	Value	Doting	m _o J		Loca	tion	
Cct ref	(F)	Rating (V)	Tol (%)		Schematic (Fig 2501)	Layout (Fig 2504)	
		(CAPACITO	RS - (cont)			
C100	3-23p			air	a/08	A7	
C1O1	200p	350	10	ceramic	a/Q7	D6	
C103	12p	350	10	ceramic	a/08		
C104	0.1μ	350	20	paper	a/S7	F 6	
C105	500p	350	10	mica	a/R8 & b/H8	в8	
c106	500p	350	10	mica	a/R8 & b/H8	E8	
C107	50p	350	10	ceramic	a/Q8	c8	
C108	2000p	350	10	mica	ъ/K4		
C109	0•01μ	350	10	mica	b/M4		
C110	8p	350	5	silver-mica	b/F7		
C111	100p	350	10	silver-mica	ь/E8		
C112	3 -1 0p	l .		air	b/E8		
C113	100p	350	10	silver-mica	b/E7		
C114	O•5μ	350	20	paper	ъ/н8		
C115	0∙5μ	350	20	paper	ъ/н8		
C116	0.01μ	350	20	paper	ъ/E8		
C117	16µ	450	+80	electrolytic	ъ/07		
			-20				
c118	40µ	350	+80	electrolytic	b/M7		
		{	-20			ļ	
C119	0 . 01μ	350	20	paper	b/M3		
C120	0.01μ	350	20	paper	b/L8		
C1 21	6p	350	5	ceramic	b/K7		
C122	0,04μ	350	10	paper	b/M8		
C123	0.01μ	350	20	paper	b/G6		
C124	0.01μ	150	20	paper	ъ/д8		
C1 25	0.01μ	150	20	paper	ъ∕л8		
C-+					Loca	tion	
Cct r ef	Desc	ription		Туре		/	
					Schematic	Schematic (Fig 2501)	
			7	VALVES			
V1	1st r.f. amp			CV454	a/F2		
V2	2nd r.f. amp	lifier		CV454	a/N2		
V3	Mixer			CV453	a/S2		
V4	Local oscill			CV1 38	a/R7		
V5	1st i.f. amp			CV454	b/F3		
v6	2nd i.f. amp			CV454	b/G3		
V7	Demodulator	_	C.	CV140	b/J2 &		
v8	A.F. amplif			CV491	b/M3 &		
v 9	'S' meter an		Limiter	CV140	b/D2 &	: D/J4	
V1 0	Crystal cali	lorator		CV1 38	a/J7		

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

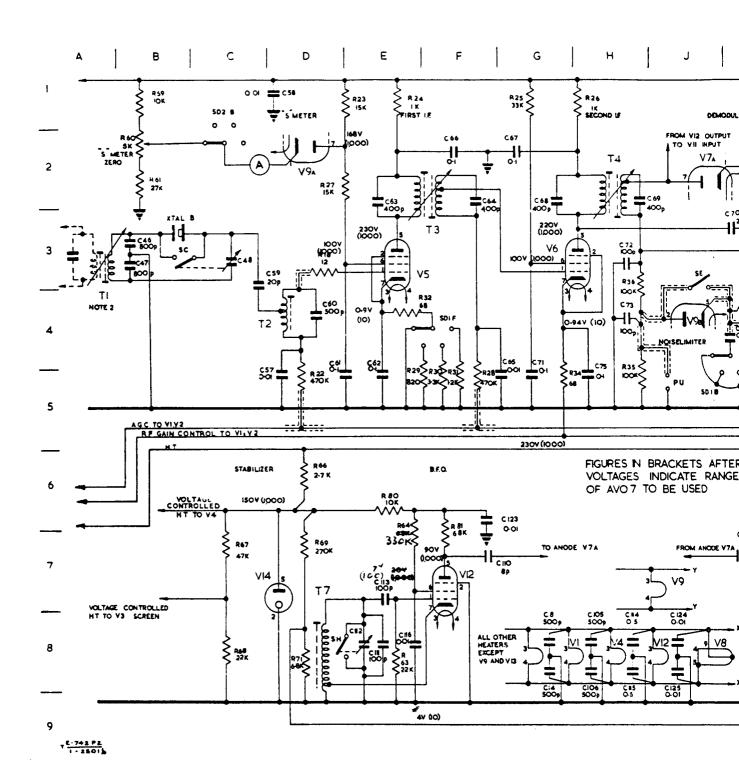

E 742 Part 2

Cet	Description	Туре	Location
ref	reser ip tion	Type	Schematic (Fig 2501)
	VALVES -	(cont)	
V11 · V12 V13 V14	Cathode follower i.f. output Beat frequency oscillator Full-wave h.t. rectifier H.T. stabilizer	CV2524 CV454 /cV+009 CV1863 CV216	b/M7 b/F7 b/P6 b/D7
Cct	Description		Location
ref	Description		Schematic (Fig 2501)
	INDUCTORS AND	TRANSFORMERS	
L1-L5 L6-L10 L11-L15 L16-L20 L21 T1 T2 T3 T4 T5 T6 T7 T8 CH1	Aerial matching transformers 1st to 2nd r.f. coupling trans 2nd r.f. to mixer coupling trans Local oscillator transformers Crystal calibrator tuning Part of mixer to 1st i.f. coup Part of mixer to 1st i.f. coup 1st to 2nd i.f. coupling 2nd i.f. to demodulator coupli A.F. output transformer A.F. filter 1kc/s Beat frequency oscillator tuni Mains transformer H.T. smoothing choke	a/C1-C4 a/K2-K5 a/P2-P5 a/N6-N8 b/K7 a/S2 & b/A3 b/D4 b/F3 b/H2 b/Q1 b/O4 b/D8 b/Q6 b/N6	
	MISCELLANE	OUS ITEMS	
A FS1 FS2 ILP1 ILP2 ILP3 ILP4 ILP5 ILP6 ILP7 ILP8 J1 PLA PLB PLC PLD PLE	'S' meter Mains fuses Range lamp Range lamp Range lamp Range lamp Range lamp Dial lamp Dial lamp Dial lamp Phone jack Aerial input plugs I.F. output plug Mains input plug External h.t. & l.t. input plu	10	b/C2 b/R78 a/F7 a/F7 a/F8 a/F8 a/F8 a/F8 a/E7 a/E7 a/E8 b/R34 a/A1 b/M8 b/R8 b/N078

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

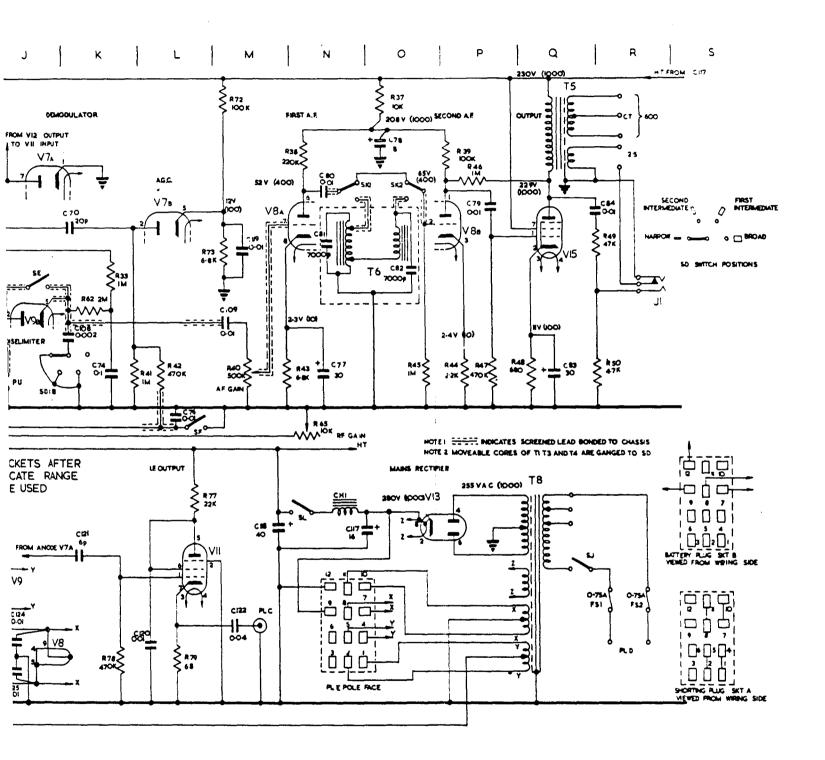

TELECOMMUNICATIONS E 742 Part 2

Cct	Description	Location
ref	Description	Schematic (Fig 2501)
	MISCELLANEOUS ITEMS - (cor	nt)
SKTA SKTB SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SB1) SC SD1B SD1F SD2B SE SF SJ SK1 SK2 SL KTAL A XTAL B	PLE shorting socket External battery socket Wavechange switch Calibrator switch Calibrator switch CRYSTAL PHASING switch SELECTIVITY switch SELECTIVITY switch Noise limiter switch A.V.C. switch A.F. filter switch A.F. filter switch H.T. switch Calibrator crystal Filter crystal	b/S78 b/S67 a/AB2 a/DE2 a/H2 a/LM2 a/O2 a/QR2 a/QR2 a/OF67 a/LM67 a/FG78 a/J6 b/BC3 b/JK45 b/EF4 b/C12 b/J3 b/L5 b/Q7 b/N2 b/N2 b/N2 b/N6 a/J8 b/B3



Page 1010

Fig 2501a - Receiver circ



eiver circuit diagram

Issue 1, 16 May 60

Fig 2501b - Receiv

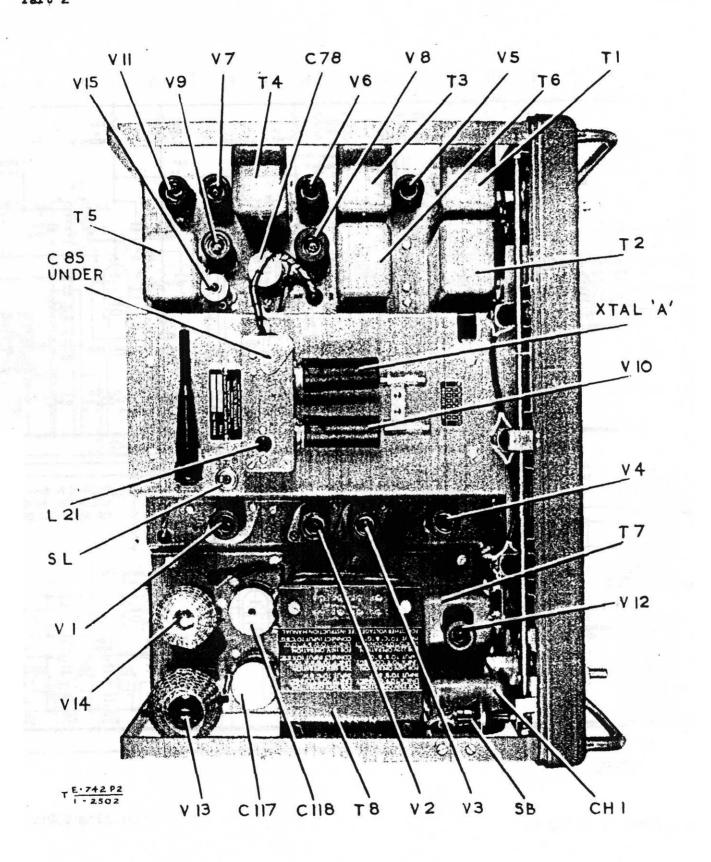
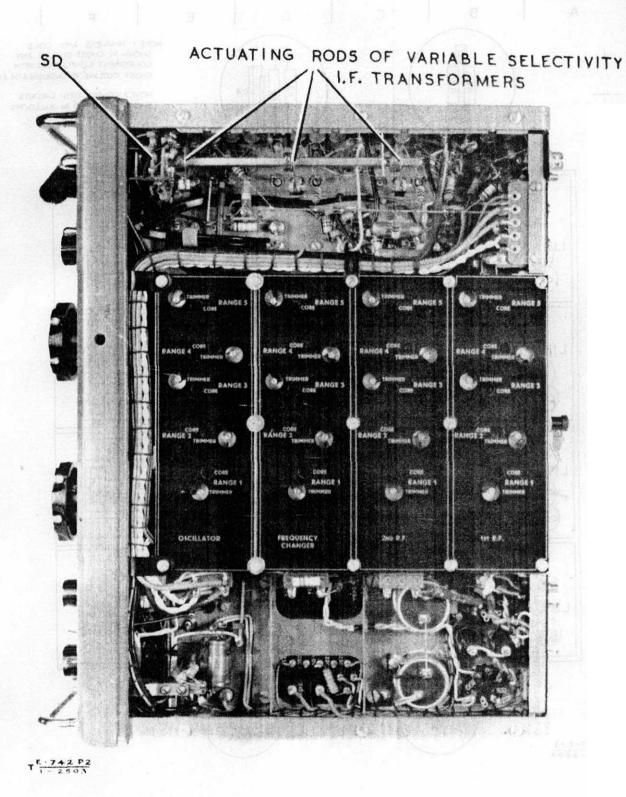



Fig 2502 - Layout above chassis

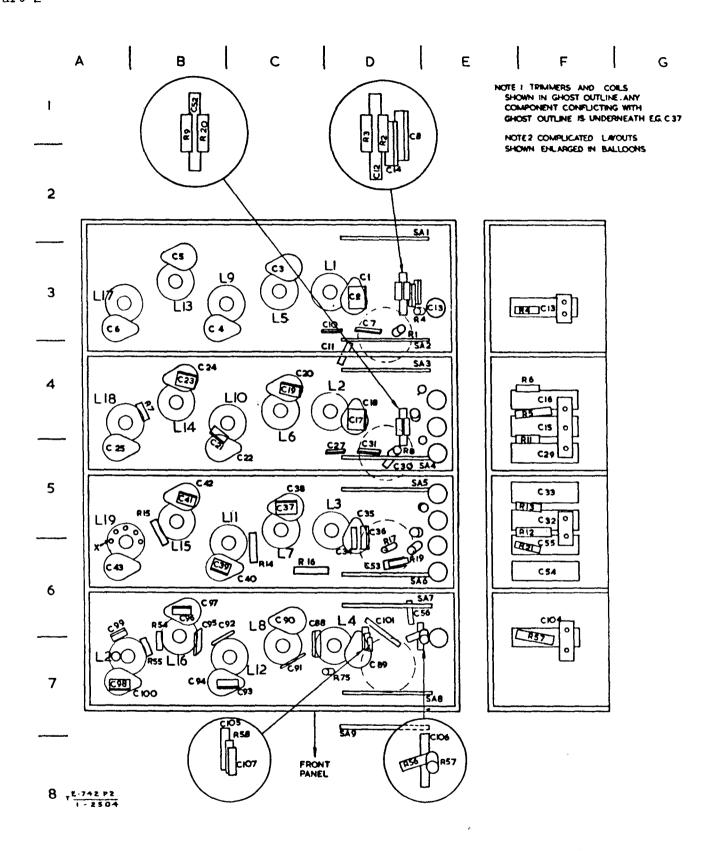


Fig 2504 - Layout of coil compartment

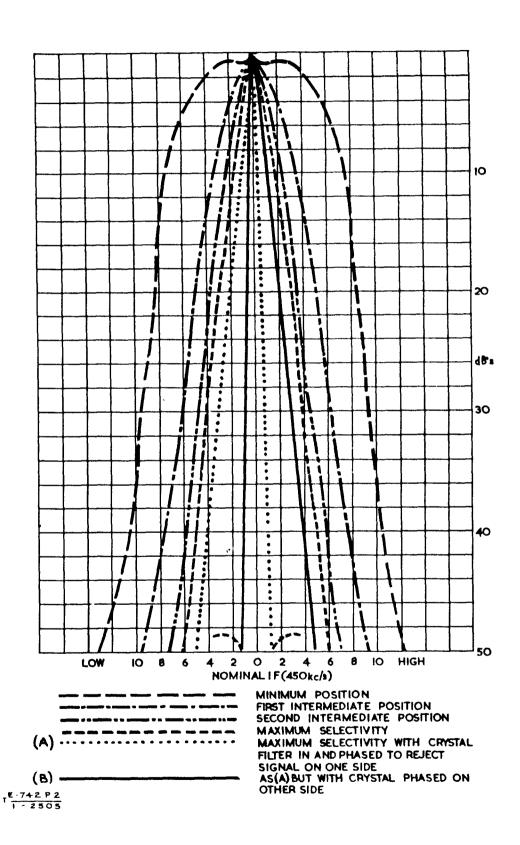


Fig 2505 - Typical i.f. response curves

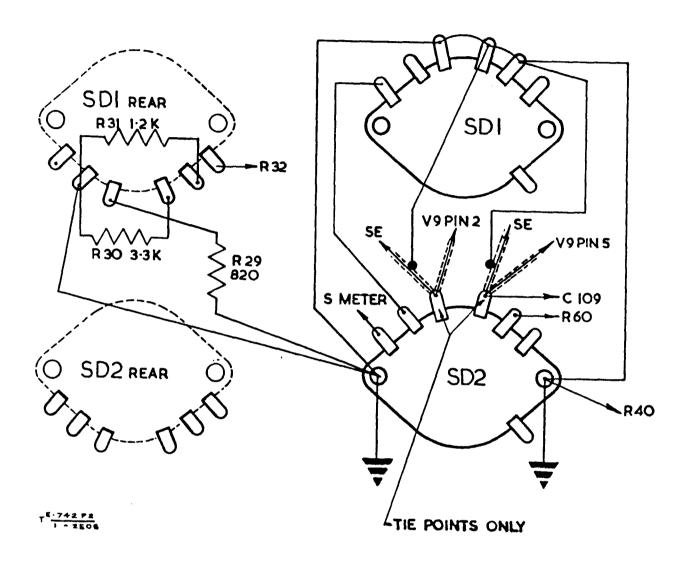
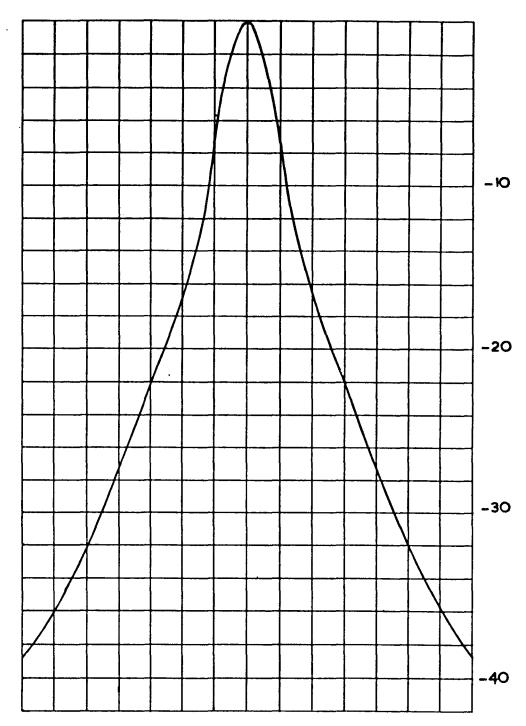



Fig 2506 - Layout of SD (viewed from rear with set inverted)

350 300 250 200 150 100 50 1000 50 100 150 200 250 300 350 CYCLES OFF 1000 c/s

EME8c/1017 57/Maint/7557
Issue 1, 16 May 60

Fig 2507 - Response of a.f. filter

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS
(By Command of the Defence Council)

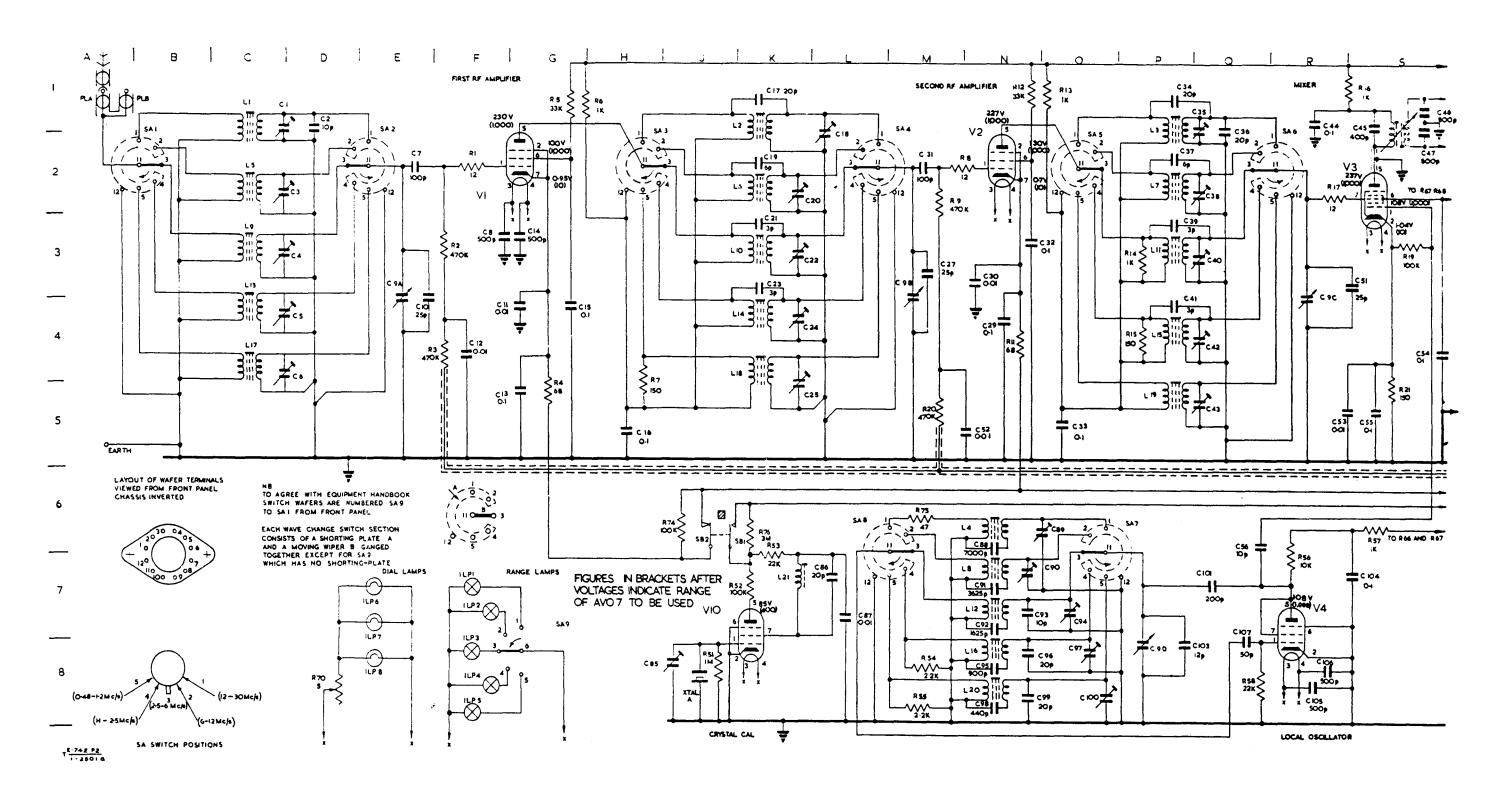
TELECOMMUNICATIONS
E 742
Part 2

RECEPTION SET, EDDYSTONE, 730/4 (Z4/ZA 51262)

FORWARD CODING

Note: The following list of Ascembly Codes must be used in conjunction with EMER Mgmt J 021 Part 4.

Assembly code	Designation
0001	Complete reception set


6-502 (Data Centre)

END

Issue 1, 28 Mar 67

Distribution - Class 335. Code No 3

Page 2001

Page 1010

Fig 2501a - Receiver circuit diagram

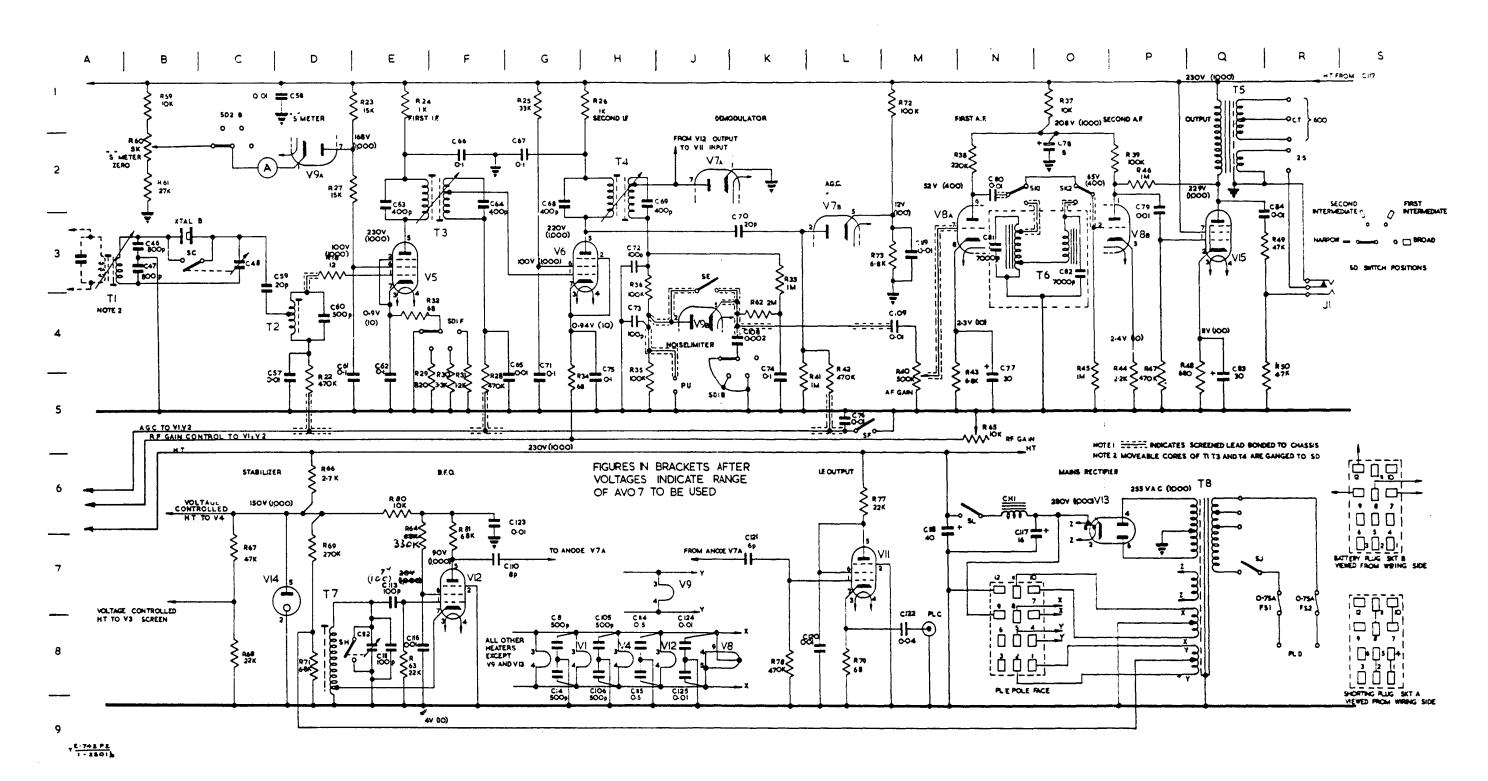


Fig 2501b - Receiver circuit diagram